
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

1 Instructor: Daniel Llamocca

Unit 7 – Applications

CONVOLUTIONAL NEURAL NETWORKS

▪ Reference: R. Gonzalez, “Deep convolutional neural networks [lecture notes]”, IEEE Signal Processing Magazine, vol. 35. no.6, Nov.

2018, pp. 79-87.
▪ Neural networks: They are a subset of the field of artificial intelligence (AI).

✓ Predominant type for multidimensional signal processing: Deep Convolutional neural networks (CNNs)
▪ The term deep refers generically to networks having from a “few” to several dozen or more convolution layers, and deep learning

refers to methodologies for training these systems to automatically learn their functional parameters using data representative of a
specific problem/domain of interest.

▪ CNNs are currently being used in a broad spectrum of application areas, all of which share the common objective of being able to
automatically learn features from (typically massive) data bases and to generalize their responses to circumstances not encountered
during the learning phase.

▪ Applications: handwriting recognition, machine-printed character recognition, natural language processing, biometrics (face, retinal
identification), visual quality inspection, medical diagnoses, and autonomous vehicle navigation.

CNN ARCHITECTURE
▪ CNNs are widely used to process 2-D signals (usually images). CNNs are the approach of choice for addressing complex image

recognition tasks.
▪ CNN architecture: layers of convolution, activation, and pooling. The result is then fed into a fully connected network (FCN). Fig. 1

shows an example for hand-written digit recognition.
✓ FCN purpose: map a set of 2-D features into a class label for each input image.

CONVOLUTIONAL LAYERS
▪ Each convolutional layer is composed of three volumes (each with height, weight, and depth):

✓ Input maps: Input matrices to the layers.
 First Layer: One matrix (if grayscale or binary image), or 3 matrices (if using RGB color space).
 Other Layers: The Input maps are the outputs of the previous layers.

✓ Feature maps: A feature map results from adding up all convolutions between each input map and an associated kernel, followed
by two pixel-to-pixel operations: adding a bias (this is optional) and applying an activation function. Each feature map has an
associated set of kernels (as many kernels as input maps) and a scalar bias. From Fig.1, we have:
 First Layer (grayscale image): One input map and 6 feature maps. Each feature map has an associated kernel (as there is only

one input map) and scalar bias. A feature map is the result of one 2-D convolution, plus adding the bias to each pixel and then
applying an activation function to each pixel.

 Second Layer: 6 input maps and 12 feature maps. Each feature map has an associated set of 6 kernels; there is a total of
6x12 kernels. A feature map is the result of applying 6 2-D convolutions, adding them up, followed by adding a bias to each
pixel and applying an activation function to each pixel.

✓ Pooled feature maps (or pooled maps, output maps): Also called sub-sampling or down-sampling. It reduces the size of the feature
maps. Not always used in some cases. Types: max, average, sum.

▪ The size of the 2D-arrays generally varies from volume to volume. However, all maps within a volume are of the same size.

Figure 1. Convolutional Neural Network (CNN) Architecture for hand-written digit recognition. Input: grayscale image. Two

convolutional layers. The first layer generates 6 image blocks, while the second layer generates 12 blocks. FCN: 3 layers. Instead of

generating a class for each digit, this FCN generates a 4-bit unsigned representation.

5x5
Convolutions

C1: feature maps

6@24x24
6@12x12

C2: feature maps

12@8x8

5x5
Convolutions

2x2
Pooling

12@4x4

2x2
Pooling

192

...

10 4

class 1

class 2

class 3

class 4

Fully Connected
Network

Layer 1 Layer 2

28x28

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

2 Instructor: Daniel Llamocca

▪ Fig. 2 depicts how the feature maps and output (pooled) maps are computed for Convolutional Layer 1 (C1) and Convolutional Layer
2 (C2). Each feature map has an associated kernel (or set of kernels), and a bias. The activation function is the same for all feature
maps in a Convolutional Layer.

CONVOLUTION
▪ The primary purpose of convolution is to extract features from the input image (e.g.: edges, orientations), hence the term feature

maps for the outputs of a convolution layer.
▪ 2-D filters (kernels) have the ability to detect/emphasize specific features in images. Example: edges, orientations.

▪ This is a computation-intensive and popular application. The input image (I) of size SXSY (SX columns, SY rows) is convolved with

a kernel (K) of size KXKY to generate and output image (O) of size (SX+KX-1)(SY+KY-1).

𝑂(𝑚, 𝑛) = 𝐼(𝑚, 𝑛)𝐾(𝑚, 𝑛) ∑ (∑ 𝐼(𝑖, 𝑗) × 𝐾(𝑚 − 𝑖, 𝑛 − 𝑗)

𝑆𝑌−1

𝑖=0

)

𝑆𝑋−1

𝑗=0

▪ m = 0, …, SY+KY-1, n = 0, …, SX+KX-1.

✓ For I, the bounds are: i = 0, …, SY-1, j = 0, …, SX-1.

✓ For K, the bounds are: i = 0, …, KY-1, j = 0, …, KX-1. During computation, there will be indices of K(m-i,n-j) that fall outside the

boundaries of K, meaning that the product term is ignored (i.e., each O(m,n) requires at most KXKY computations). In addition,

this means that when computing O(m,n) at the borders, we can graphically visualize the computation where I(i,j) as zero-padded

outside the boundaries of I.

▪ Fig. 3 illustrates these concepts. The convolution operation is like a sliding window: for every O(m,n), the flipped kernel overlaps with

I, where we multiply-and-add only the overlapping elements. In some cases, there are elements of the flipped kernel that do not

overlap with the elements of I. Here, these operations do not occur (this is like I was zero-padded).

✓ Fig. 3(a): Two kernels will be used to illustrate the operation. Note how the kernel is flipped. The kernel is usually square. We use
one kernel with odd sizes and the other with even sizes.

✓ Fig. 3(b): Kernel with odd sizes. The location of an output value O(m,n) overlaps with the center of the kernel, indicated as a red

square.

✓ Fig. 3(c): Kernel with even sizes. The location of an output value O(m,n) overlaps with an element of the kernel, indicated as a

red square located in the position (⌊𝐾𝑋/2⌋ + 1, ⌊𝐾𝑌/2⌋ + 1) of the kernel. Kernel indices: (1,1) to (KX, KY).

Figure 2. Computation of Feature Maps for C1 and C2 (see CNN in Fig. 1). C1: a feature map is the result of one 2-D convolution, plus

the scalar bias and the activation function. C2: a feature map is the result of a sum of six 2-D convolutions, plus the scalar bias and the

activation function.

5x5

Convolutions

C1: feature maps

6@24x24

28x28

...

...

5x5

Convolutions

C2: feature maps

12@8x8

C1: Feature Maps computation

...

...

act.
fun

act.
fun

...

act.
fun

act.
fun

act.
fun

bias

C2: Feature Maps computation

C2: Input maps

6@12x12

C1: Input map bias

bias

bias

act.
fun

act.
fun

bias

bias

bias

...

C2: Output maps

12@4x4

C1: Output maps

6@12x12

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

3 Instructor: Daniel Llamocca

I32

I00 I01 I02 I03

I10 I11 I12 I13

I20 I21 I22 I23

I30 I31 I32 I33

K00 K01 K02

K10 K11 K12

K20 K21 K22

K22 K21 K20

K12 K11 K10

K02 K01 K00

I01 I02 I03

I10 I11 I12 I13

I20 I21 I22 I23

I30 I31 I32 I33

I01 I02 I03

I10 I11 I12 I13

I20 I21 I22 I23

I30 I31 I33

I00I00

O01 O02 O03

O10 O11 O12 O13

O20 O21 O22 O23

O30 O31 O33

O04

O14

O24

O34

O05

O15

O25

O35

O40 O41 O42 O43

O50 O51 O52 O53

O44

O54

O45

O55

O00

O32

Input Image: I

Kernel: K

Flipped

Kernel

Output Image: O

i

j

m

n

I32

I01 I02 I03

I10 I11 I12 I13

I20 I21 I22 I23

I30 I31 I32 I33

I01 I02 I03

I10 I11 I12 I13

I20 I21 I22 I23

I30 I31 I33

I00I00

O01 O02 O03

O10 O11 O12 O13

O20 O21 O22 O23

O30 O31 O33

O04

O14

O24

O34

O40 O41 O42 O43 O44

O00

O32

Output Image: O

m

n

K00 K01

K10 K11

K11 K10

K01 K00

Kernel: K

Flipped

Kernel

(a)

(b)

(c)

▪ Output matrix size. Fig. 4 depicts the three approaches for SX=SY=4, KX=KY=3.

✓ Full convolution: It returns a matrix of size (SX+KX-1)(SY+KY-1).

✓ Central part of the convolution (SXSY): The output matrix size is that of the input I. If KX or KY is even, then the ‘center’ leaves

one more at the beginning than the end. You can use the following formula to get the central part of the convolution out of the

full convolution of size (SX+KX-1)(SY+KY-1). The indices consider the full convolution output to be from (1,1) to (SX+KX-

1,SY+KY-1):

⌊
𝐾𝑋

2
⌋ + 1: 𝑆𝑋 + ⌊

𝐾𝑋

2
⌋ , ⌊
𝐾𝑌

2
⌋ + 1: 𝑆𝑋 + ⌊

𝐾𝑌

2
⌋

✓ Narrow convolution (SX-KX+1)(SY-KY+1): Convolution is computed only in those positions where all the kernel values have a

matching input component. This is not the case at the boundaries of the input. This is the preferred approach in Convolutional
Layers.

▪ Note that each convolution element can be thought of as the result of a dot product. Also, sometimes, a scalar value (bias b) is added

to each pixel resulting from convolution.
✓ Since each output value computation is essentially similar to how the neuron output value is generated (see FCN section below),

we can apply similar techniques (e.g.: back-propagation) to train the convolutional layer parameters.

Figure 3. 2D convolution. (a) Input image: I(4x4). Kernels: 3x3 and 2x2. (b) Convolution with 3x3 kernel. Output Image: O (6x6).

(c) Convolution with 2x2 kernel. Output image: O (5x5).

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

4 Instructor: Daniel Llamocca

▪ Note: The Convolutional Layers in CNNs do not flip the kernel prior to performing the sliding window multiply-and-add computation.

This operation is actually called ‘cross-correlation’. However, since the computations are essentially identical we still use the
‘convolution’ label.

ACTIVATION FUNCTION (introducing non-linearity)
▪ We apply an activation function to each pixel. This is a pixel-to-pixel operation. Common activation functions include the following

non-linear operations:

✓ Rectified Linear Unit (ReLU): 𝜎(𝑧𝑗
𝑙) = max (0, 𝑧𝑗

𝑙)

✓ Hyperbolic Tangent: 𝜎(𝑧𝑗
𝑙) = tanh(𝑧𝑗

𝑙)

✓ Sigmoid function: 𝜎(𝑧𝑗
𝑙) = 1

(1 + 𝑒−𝑧𝑗
𝑙

)⁄

POOLING (or Sub-sampling)
▪ This operation reduces the dimensionality of each feature maps but retains the most important information. Spatial pooling can be of

different types: max, average, sum, etc.
▪ For Max Pooling we define a spatial neighborhood (e.g., 2x2 window) and take the largest element within that window. Instead of

taking the largest element, we could also take the average (Average Pooling) or sum of all elements in that window (Sum Pooling).
In practice, Max Pooling has been shown to work better.

▪ Note that the pooling operation is applied separately to each feature map.
▪ A consequence of pooling is significant data reduction, which helps speed up processing.
▪ Fig. 4 shows an example of Max Pooling operation by using a 2x2 window that slides by 2 cells.

O01 O02 O03

O10 O11 O12 O13

O20 O21 O22 O23

O30 O31

O04

O14

O24

O34

O05

O15

O25

O35

O40 O41 O42 O43

O50 O51 O52 O53

O44

O54

O45

O55

O32

Output Image: O

O11 O12 O13

O21 O22 O23

O31 O33

O14

O24

O34

O41 O42 O43 O44

O32

Output Image: O

O22 O23

O33O32

Output Image: O

O00

O33

𝐾𝑌 − 1

2

𝐾𝑌 − 1

2

𝐾𝑋− 1

2

𝐾𝑋− 1

2

SX

SY

SX-KX+1

S
Y
-
K
Y
+
1

S
Y
+
K
Y
-
1

(a) (b) (c)

Figure 4. Different approaches for selecting output matrix size. I (4x4), K(3x3). (a) Central part of the convolution: O(4x4). This

is common in image filtering applications. (b) Full convolution: O(6x6). This is what is computed by the convolution formula.

(c) Narrow convolution: O(2x2). This is preferred in convolutional neural network applications.

Figure 5. Max Pooling operation. Window size: 2x2. Stride: 2

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

5 Instructor: Daniel Llamocca

FULLY CONNECTED NETWORK (FCN)
▪ The purpose of an FCN is to map a set of features into a class label for each input sample (e.g. image).
▪ A 3-layer neural network (also called a Fully Connected Layer) is depicted in Fig. 6(a). Fig. 6(b) depicts the inputs and output of the

first neuron (index ‘1’) in layer 3.
✓ Input layer (𝑙 = 1): It represents the input values to the network. There is no computation in Layer 1.

▪ Fig. 6(c) depicts an artificial neuron model. The neuron output (action potential 𝑎𝑗
𝑙) results from applying an activation function to the

membrane potential (𝑧𝑗
𝑙). The index corresponds to neuron 𝑗 in layer 𝑙.

▪ The membrane potential 𝑧𝑗
𝑙 is a dot product between the inputs and the associated weights, to which a bias is then added.

𝑧𝑗
𝑙 =∑𝑤𝑗𝑘

𝑙 𝑎𝑘
𝑙−1

𝑘

+ 𝑏𝑗
𝑙 , 𝑙 > 1

▪ The action potential intensity of a neuron is denoted by 𝑎𝑗
𝑙, and it is modeled as a scalar function (activation function) of 𝑧𝑗

𝑙:

𝑎𝑗
𝑙 = 𝜎(𝑧𝑗

𝑙) = 𝜎 (∑𝑤𝑗𝑘
𝑙 𝑎𝑘

𝑙−1

𝑘

+ 𝑏𝑗
𝑙) , 𝑙 > 1

▪ Common activation functions include the following non-linear operations:

✓ Rectified Linear Unit (ReLU): 𝜎(𝑧𝑗
𝑙) = max (0, 𝑧𝑗

𝑙)

✓ Hyperbolic Tangent: 𝜎(𝑧𝑗
𝑙) = tanh(𝑧𝑗

𝑙)

✓ Sigmoid function: 𝜎(𝑧𝑗
𝑙) = 1

(1 + 𝑒−𝑧𝑗
𝑙

)⁄

▪ The output of a layer l can be described using a vectorized notation:

𝑎𝑙 = 𝜎(𝑧𝑙), 𝑧𝑙 = 𝑤𝑙𝑎𝑙−1 + 𝑏𝑙 , 𝑙 > 1

Where: 𝑤𝑙: weight matrix (NO rows by NI columns) of the layer 𝑙,

𝑎𝑙−1: action potential vector (NI rows) of the previous layer 𝑙-1.

𝑏𝑙: bias vector (NO rows) of the layer 𝑙.

𝑧𝑙: membrane potential vector (NO rows) of the layer 𝑙.

𝑎𝑙: action potential vector (NO rows) of the layer 𝑙.

▪ Fig. 7 depicts the matrix operation for 𝑧𝑙. NO: # of neurons in layer l. NI: # of inputs for each neuron in layer l.

Figure 6. (a) 3-layer neural network. (b) First neuron (index ‘1’) in layer l=3. (c) Artificial neuron model. The membrane potential is a

sum of products (input activations by weights) to which a bias term is added. The index corresponds to neuron 𝑗 in layer l. The

input activations come from a previous layer (l-1).

Figure 7. Matrix operation for the computation of all membrane potentials in layer l.

𝑗

𝑤𝑙 𝑎𝑙−1 𝑏𝑙 𝑧𝑙

 𝑗 𝑗

× + =

𝑧𝑙 = 𝑤𝑙𝑎𝑙−1+𝑏𝑙

NO

NI

𝑙 = 1 𝑙 = 2 𝑙 =

class 1

class 2

class 3

𝑤11

𝑤1

𝑤1

𝑤1

𝑤1

𝑎1
 𝑎

𝑎

𝑎

𝑎

𝑎1

𝑏1

input

hidden

lay er

output

lay er

(a) (b)

S

𝑤𝑗1
𝑙

𝑤𝑗
𝑙

𝑤𝑗
𝑙

𝑤𝑗
𝑙

𝑎𝑗
𝑙

𝑎
𝑙−1

𝑎
𝑙−1

𝑎
𝑙−1

𝑎1
𝑙−1

𝑏𝑗
𝑙

...

𝑧𝑖
𝑙

𝜎 𝑧𝑗
𝑙

membrane
potential

action
potential

(c)

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

6 Instructor: Daniel Llamocca

C++/TBB CODE
FCN: COMPARISON OF DIFFERENT APPROACHES

▪ FCN (4 layers, LT=4, L=3):
First layer is just inputs.

✓ Layer l=0 (input): 28x28 = 784 outputs

✓ Layer l=1: 784 inputs, 120 outputs (ReLU)

✓ Layer l=2: 120 inputs, 84 outputs (ReLU)

✓ Layer l=3: 84 inputs, 10 outputs. Classified output: the one with the maximum value.

▪ Testing Dataset: 10,000 samples of 784 (28x28) elements each.

▪ Trained model available in Python, called ‘pytst’. Accuracy: 95.01%

TABLE I. COMPARISON OF VARIOUS PARALLEL APPROACHES FOR FCN IMPLEMENTATION

Code Style Comments
Execution Time

‘pytst’

seq\nnetwork.cpp Straightforward sequential implementation 1.67s

tbb\nnetwork.cpp

At each layer, all action potentials are computed in parallel via parallel_for. Each

computation: dot product, plus bias, and ReLU.

parallel_reduce: tried for each dot product, but it increased computation time by ~7X.

1.24s

tbb\nnetwork_a.cpp

We generated several FCNs (copying the object PN times) so that they can compute data in

parallel. PN: # of samples computed concurrently.

This includes the parallel_for approach specified in nnetwork.cpp.

PN=2: 1.67s

PN=4: 1.67s

PN=8: 1.65s

tbb\nnetwork_b.cpp
Similar to nnetwork_b.cpp, but code is optimized: the pointers to weights and biases is

reused. Faster, though PN does not really affect the speed (PN=100 resulted in ~ time).

PN=2: 0.95s

PN=4: 0.95s

PN=8: 0.93s

CNN: COMPARISON OF DIFFERENT APPROACHES
▪ CNN:

Conv Network (2 layers, LC = 2) FCN (4 layers, LT=4, L=3). First layer is just inputs.

✓ Layer 1: 1 input channel, 6 output channels, 6x1 3x3 kernels

+ 6x1 bias, 2x2 max pool.

 Input Channel: size of inputs: 28x28=784 pixels.

✓ Layer 2: 6 input channels, 16 output channels, 16x6 3x3

kernels + 16x1 bias, 2x2 max pool.

✓ Layer l=0 (input): 16x5x5 = 400 outputs

✓ Layer l=1: 400 inputs, 120 outputs (ReLU)

✓ Layer l=2: 120 inputs, 84 outputs (ReLU)

✓ Layer l=3: 84 inputs, 10 outputs. Classified output: the one with

the maximum value.

▪ Testing Dataset: 10,000 samples of 784 (28x28) elements each.

▪ Trained model available in Python, called ‘pycnn’. Accuracy: 96.97%

TABLE II. COMPARISON OF VARIOUS PARALLEL APPROACHES FOR CNN IMPLEMENTATION

Code Style Comments
Execution Time

‘pycnn’

seq\mycnn.cpp Straightforward sequential implementation (both convolutional network and FCN) 5.88 s

tbb\mycnn.cpp

▪ Convolutional Network: At each layer, all output features are computed in parallel via

parallel_for. Each computation: sum of convolutions, plus bias, plus ReLU, plus pooling.

✓ parallel_reduce: tried for the sum of convolutions (Layer 2 only, Layer 1 not needed as

there is only one convolution per output feature). Computation time barely affected.

▪ FCN: like \tbb\nnetwork.cpp

3.44 s

parallel_reduce:

3.40 s

Figure 8. CNN Architecture associated with the results of Table II. The FCN Architecture can be associated with

the results of Table I (if the first layer has 784 inputs instead of 400)

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

7 Instructor: Daniel Llamocca

tbb\my_cnn_p.cpp

▪ Convolutional Network and FCN: Like tbb/mycnn.cpp.

▪ parallel_pipeline: Computations divided into all serial stages:

✓ Approach ‘a’: 3 stages. (PIP_APP = 0)

 Stage 1: Issue pointers to image locations in a linear array (i.e., issue linear images)

 Stage 2: Convert linear image into a 2D array, then apply Conv Network.

 Stage 3: Convert pooled feature maps (2D arrays) into a single linear array, then

apply FCN.

✓ Approach ‘b’: 3 stages. (PIP_APP = 1)

 Stage 1: Issue images as pointers to 2D arrays (converts linear array into 2D array)

 Stage 2: Apply Conv Network.

 Stage 3: Convert pooled feature maps (2D arrays) into a single linear array, then

apply FCN.

✓ Approach ‘c’: 4 stages. (PIP_APP = 2)

 Stage 1: Issue pointers to image locations in a linear array (i.e., issue linear images)

 Stage 2: Convert linear image into a 2D array, then apply Conv Layer 1.

 Stage 3: Apply Conv Layer 2

 Stage 4: Convert pooled feature maps (2D arrays) into a single linear array, then

apply FCN.

Approach ‘a’:

3.37 s

Approach ‘b’:

3.38 s

Approach ‘c’:

3.34 s

parallel_reduce:

Approach ‘a’:

3.56 s

Approach ‘b’:

3.55 s

Approach ‘c’:

3.55 s

tbb\mycnn_m.cpp

▪ Convolutional Network and FCN: Like tbb/mycnn.cpp

▪ We generated several CNNs (copying the object PN times) so that they can compute data

in parallel (via parallel_for_. PN: # of samples computed concurrently. (PN > 2 -> no diff)

PN=2: 3.38 s

▪ Optimized approach: the pointers to weights and biases is reused. PN=2: 3.22 s

TRAINING
▪ This is the ability to use sampling training data to learn the operation parameter of each network layer.
▪ The objective is to determine the weights and biases of the convolutional layers as well as of the neural network layers.

✓ Back-propagation algorithm: Tool to iteratively adjust the network parameters (kernel coefficients, biases, neuron weights, neuron
biases).

▪ MNIST database: 60,000 training samples; 10,000 testing samples. Sample: 28x28 grayscale image

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

8 Instructor: Daniel Llamocca

ALGORITHMS FOR MEDIAN FILTER COMPUTATIONS

FORGETFUL_SELECTION

▪ This algorithm only works for odd-length array; it gets the median out of an array.

✓ Note: the median of an even-length array is the mean of the 2 center elements (once

array is sorted). Here, for integer elements, the median may not be integer.

▪ Input data: 𝑛 = × pixels (k odd). For k=3,5,7,9,11: is odd.

▪ Algorithm: It appeared in [Perrot2014 first] (then in [Salvador2018]).

✓ Take the first 𝑟 elements of unsorted n-element sequence.

 𝑟 = ⌈

⌉ + 1 (Perrot2014), 𝑟 =

 +

 (Salvador 2018). These formulas match for =

 ,5,7,9,11.

✓ Perform ‘partial_forgetful_selection’ (pfs): Find the extrema (minimum and

maximum). Remove these elements from the array.

✓ Insert the remaining 𝑛 − 𝑟 elements one by one. For each insertion, perform a

‘partial_forgetful_selection’. Stop when there is only one element left (the median).

✓ Total number of ‘partial_forgetful_selections’ (also called steps): 𝑛 − 𝑟 + 1 = 𝑛 −

⌈

⌉ (Perrot2014). One step to process the first 𝑟 elements, and then 𝑛 − 𝑟 steps.

▪ Note: You cannot get the median by first getting the median of a portion of an 𝑛-

element vector, then inserting that median into the remaining elements, and then

computing the final median out of those elements. The forgetful_selection algorithm

does not do this, it rather performs a partial_forgetful_selection on the first 𝑟 elements

(leaving 𝑟 − 2 elements), and then inserts the remaining elements (one by one)

performing a partial_ forgetful_selection every time.

PARALLEL COMPUTATION OF 4 PIXELS

▪ Simple approach: feed 4 × matrices (adjacent, as per a median filter operation), and compute the median of each of them in parallel.

Since the matrices are adjacent, there are redundant computations that can be exploited (that are not used here).

▪ [Salvador2018 approach]: feed one (+ 1) × (+ 1) matrix. This is like feeding 4 × matrices (adjacent). We get the median out of

each of the × matrices while overlapping some computations (redundancies exploited). odd, = 5,7,9,11

[SALVADOR2018] APPROACH

▪ Here, we feed a matrix 𝐴 of size (+ 1) × (+ 1), and generate 4 output pixels. 𝑖 = 1,2, ,4 (the median out of each × matrix)

▪ Window of interest for each output pixel: This is its corresponding × matrix.

✓ Size of window of interest for each output pixel: 𝑠 = × .

✓ Indices (starting at 1) of windows of interest for each pixel (with respect to matrix 𝐴 of size (+ 1) × (+ 1)):

 Pixel 1: 𝐴(1: , 1:)

 Pixel 2: 𝐴(1: , 2: + 1)

 Pixel 3: 𝐴(2: + 1,1:)

 Pixel 4: 𝐴(2: + 1,2: + 1)

▪ Common region for all 4 output pixels: (− 1) ×

(− 1) matrix. This is the center of matrix 𝐴 of size

(+ 1) × (+ 1).

✓ Size of the common region for all output

pixels: 𝑠𝑐 = (− 1) × (− 1).

✓ Indices of the common region: 𝐴(2: , 2:)

Figure 1. forgetful_selection for 𝑛 = 9.

Figure 2. Input matrix 𝐴 with (+ 1) × (+ 1) elements (= 5). It also displays

the windows of interest for each output pixel (𝑖 = 1,2, ,4)

2

3 4

1

1 2

3 4

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

9 Instructor: Daniel Llamocca

▪ Decomposition of the window of interest (𝒔 = 𝒌 × 𝒌) for each output pixel:

✓ Given the (+ 1) × (+ 1) input matrix, the window of interest (×) for each

output pixel can be decomposed as follows:

 Common region: 𝑠𝑐 = (− 1) × (− 1) pixels

 Row vector: − 1 pixels.

 Column vector: − 1 pixels.

 Corner element: 1 pixel.

✓ Table I lists the elements to process for each output pixel (𝑖 = 1,2, ,4):

 We will first process the common region (𝑠𝑐 elements), shared by all

the × windows of interest. Then, we process the remaining 𝑠 −

𝑠𝑐 elements: row vector, column vector, and corner element.

TABLE I.DECOMPOSITION OF A WINDOW OF INTEREST FOR EACH OUTPUT PIXEL THIS ALLOWS US TO EXPLOT REDUNDANT COMPUTATIONS

 𝑠𝑐 elements 𝑠 − 𝑠𝑐 elements

Common region: (− 1) × (− 1) Row vector: (− 1) Column vector (− 1) Corner element: (1)

Pixel 1

𝐴(2: , 2:)

Vector 1&2: 𝐴(1,2:) Vector 1&3: 𝐴(2: , 1) 𝐴(1,1)

Pixel 2 Vector 1&2: 𝐴(1,2:) Vector 2&4: 𝐴(2: , + 1) 𝐴(1, + 1)

Pixel 3 Vector 1&3: 𝐴(2: , 1) Vector 3&4: 𝐴(+ 1: 2:) 𝐴(+ 1,1)

Pixel 4 Vector 2&4: 𝐴(2: , + 1) Vector 3&4: 𝐴(+ 1: 2:) 𝐴(+ 1, + 1)

 Note that 𝑠 = × = (− 1) × (− 1) + 2 × (− 1) + 1, 𝑠𝑐 = (− 1) × (− 1), 𝑠 − 𝑠𝑐 = 2 × (− 1) + 1

 We could just perform forgetful_selection on each of the 4 × matrices (simple parallelization approach).

▪ Procedure: Each × matrix (𝑖 = 1,2, ,4) has 𝑟 =
𝑘2+

. 𝑠 = × , 𝑠𝑐 = (− 1) × (− 1), 𝑠 − 𝑠𝑐 = 2 × (− 1) + 1

✓ Common region (𝑠𝑐 elements): Perform an incomplete ‘forgetful_selection’ on one × matrix (any). Here, we only process the

𝑠𝑐 common region elements: (Fig. 4 shows an example for = 5).

 Perform one partial_forgetful_selection on the first 𝑟 elements. We will be left with 𝑟 − 2 elements.

 Insert the remaining 𝑠𝑐 − 𝑟 (this is not 𝑠 − 𝑟) elements one by one. For each insertion, perform a partial_forgetful_selection.

 Here, unlike the complete forgetful_selection, after we insert all the 𝑠𝑐 − 𝑟 elements, we are left with 𝑟 − 2 − (𝑠𝑐 − 𝑟) =

2𝑟 − 𝑠𝑐 − 2 elements (we do not get the median). Each time we insert an element, we perform a partial_forgetful_selection

that removes the extrema (two elements). So, there is a net loss of one element per insertion (there are 𝑠𝑐 − 𝑟 insertions).

 So far, we have performed 1 + 𝑠𝑐 − 𝑟 partial_forgetful_selections on the 𝑠𝑐 common elements. The resulting 2𝑟 − 𝑠𝑐 − 2

elements are valid for all 4 output pixels. This is the redundancy that we exploit, as we only need to do this once.

✓ Remaining elements (𝑠 − 𝑠𝑐 elements per output pixel 𝑖 = 1,2, ,4): Fig. 5 depicts this procedure for one pixel and = 5.

 To complete the forgetful_selection procedure, for each output pixel (with a × region of interest) 𝑖 = 1,2, ,4, do:

 Use the 2𝑟 − 𝑠𝑐 − 2 elements (from the previous operation) and insert 𝑠 − 𝑠𝑐 elements (one by one) and perform the

associated 𝑠 − 𝑠𝑐 partial_forgetful_selections (for a total of 1 + 𝑠 − 𝑟 partial_forgetful_selections). Result: pixel 𝑖 (median

of the associated × region).

 Keep in mind: The 𝑠 − 𝑠𝑐 elements are different for each output pixel.

 Since every insertion causes a net loss of 1 element, at the end of the procedure, we are left with 2𝑟 − 𝑠𝑐 − 2 − (𝑠 − 𝑠𝑐) = 2𝑟 −

2 − 𝑠 elements. Since 𝑟 =
𝑠+

, then 2𝑟 − 2 − 𝑠 = 𝑠 + − 2 − 𝑠 = 𝟏 element (as it should, this is the median).

 These are 4 independent computations (that could run in parallel).

✓ Table II shows numeric examples for various values of . Note that the algorithm DOES NOT work for = , as first we would

need to process 𝑟 = 6 pixels, and then insert 𝑠𝑐 − 𝑟 = −2 pixels. Thus, for = , we just apply 4 normal × forgetful_selections.

TABLE II. NUMBER OF PROCESSED ELEMENTS FOR VARIOUS VALUES OF K.

2𝑟 − 𝑠𝑐 − 2 elements

(valid for all output pixels)

𝑠 − 𝑠𝑐 elements to insert (one by one): different for each pixel
𝑠 𝑟 𝑠𝑐 𝑠𝑐 − 𝑟 𝑠 − 𝑠𝑐

Row vector: (− 1) Column vector: (− 1) Corner

3 6 2 2 1 9 6 4 -2 5

5 10 4 4 1 25 14 16 2 9

7 14 6 6 1 49 26 36 10 13

9 18 8 8 1 81 42 64 22 17

11 22 10 10 1 121 62 100 38 21

Figure 3. Matrix 𝐴 of size (+ 1) × (+ 1), = 5.. It shows:

common region ((− 1) × (− 1) center matrix), the row

vectors (1&2, 3&4), column vectors (1&3, 2&4), and corner

elements for the output pixels 𝑖 = 1,2, ,4

2

3 4

1

1&2

3&4

2&41&3

1 2

3 4

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

10 Instructor: Daniel Llamocca

▪ We can further save 2 × (− 1) partial_forgetful_selections.

✓ Pixels 1 and 2 have Vector 1&2 in common. So, we insert this

vector (− 1 ‘partial forgetful_selections). The resulting vector

is valid for Pixels 1 and 2. Then:

 Pixel 1: Insert Vector 1&3 and corner element 𝐴(1,1), i.e.,

 − 1 + 1 elements (one by one) and perform the

corresponding − 1 + 1 partial_forgetful_selections.

 Pixel 2: Insert Vector 2&4 and corner element 𝐴(1, + 1),

i.e., − 1 + 1 elements (one by one) and perform the

corresponding − 1 + 1 ‘partial forgetful_selections’.

✓ Pixels 3 and 4 have Vector 3&4 in common. So, we insert this

vector (− 1 ‘partial forgetful_selections’). The resulting vector

is valid for Pixels 3 and 4. Then:

 Pixel 3: Insert Vector 1&3 and corner element 𝐴(+ 1,1),

i.e., − 1 + 1 elements (one by one) and perform the

corresponding − 1 + 1 ‘partial forgetful_selections’.

 Pixel 4: Insert Vector 2&4 and corner element 𝐴(+ 1, +

1), i.e., − 1 + 1 elements (one by one) and perform the

corresponding − 1 + 1 ‘partial forgetful_selections’.

▪ Overall, for ≠ , this procedure saves (at least in software):

✓ (1 + 𝑠𝑐 − 𝑟) × partial_forgetful_selections. Since we only

need to process the common region (𝑠𝑐 elements) once.

✓ 2 × (− 1) partial_forgetful_selections: As explained above,

besides the common region, pixels have a row or column

vector in common.

Figure 4. Part 1 [Salvador2018]: process only the common region (𝑠𝑐 elements) with 1 + 𝑠𝑐 − 𝑟 partial_forgetful_selections. We

can use any of the 4 × matrices. The figure uses the × window of interest for 𝑖 = 2.

2

3 4

1

1&2

3&4

2&41&3

1 2

3 4

Use any matrix, do this only once:

min max

min max

min max

Figure 5. Part 2 [Salvador2018]: Insert the remaining 𝑠 − 𝑠𝑐 pixels (perform 𝑠 − 𝑠𝑐 partial_forgetful_selections) and get output pixel 𝑖 (the

median). Repeat this procedure for each one of the output pixels (with associated × matrix). The figure depicts an example for = 5.

At each of the 4 matrices:

min max

min max

min max

min max

min max

min max

min max

min max

min max

pixel

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

11 Instructor: Daniel Llamocca

ADAPTIVE BEAMFORMING

▪ Widely used in radar, sonar, speech acquisition, and mobile/wireless communication.

▪ Adaptive Beamformers are the main component in a switched-beam smart antenna.
✓ Switched-beam smart antenna: system that can select from one of many predefined beam patterns in order to emphasize the

level of signals of interest while minimizing undesired signals.

BEAMFORMING STRUCTURE

▪ This is depicted in Fig. C.1. An array of M sensors generates a snapshot (collection of M complex samples) 𝒚(𝑛) at time 𝑛.
✓ Output signal 𝑧(𝑛): product of the snapshot 𝒚(𝑛) (collection of signals from M antenna elements) by a complex weighting vector.

Goal: to suppress undesired signals and to emphasize signals from desired directions of arrivals. The weights are adaptively
adjusted to suppress time-varying undesired signals with unknown direction of arrival. The maximum gain should be achieved in
the direction of the desired signal.

▪ For the beamformer, the output at a time 𝑛, 𝑧(𝑛) is given by a linear combination of the data at M sensors.

✓ 𝒚(𝑛): column vector of length M representing M complex input samples at time 𝑛.

✓ 𝒘(𝑛): column vector of length M containing the complex weights at time 𝑛.
𝑧(𝑛) = 𝒘𝐻(𝑛). 𝒚(𝑛)

INPUT SIGNALS
▪ For example, if we consider a linear array with M sensors, the samples at each sensor 𝑚 (𝑚 = 1, . . 𝑀) can be modeled as:

𝑦𝑚[𝑛] = 𝑠𝑚[𝑛] + 𝑖𝑚[𝑛] + 𝑟𝑚[𝑛]

where 𝑠𝑚[𝑛] denotes the desired signal or signal-of-interest (SOI), 𝑖𝑚[𝑛] the interference (or jammer), and 𝑟𝑚[𝑛] the noise. Based on

a baseband model, for a specific angle of arrival, each signal can be expressed as:

𝑠𝑚[𝑛] = 𝑠[𝑛]𝑒−𝑗�⃗� .𝑥 𝑚 , 𝑖𝑚[𝑛] = 𝑖[𝑛]𝑒−𝑗�⃗� .𝑥 𝑚

where ⃗ . 𝑥 𝑚 = 𝜋 sin (𝑚 − 1 − (
𝑀−1

))

𝑑

 ⁄
 depends on the angle of arrival of the signal (be it 𝑠[𝑛] or 𝑖[𝑛]).

TYPICAL BEAMFORMING ALGORITHMS
▪ Least Mean Square (LMS):

𝑧(𝑛) = 𝒘𝐻(𝑛). 𝒚(𝑛)
𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝜇. 𝒚(𝑛). 𝑒∗(𝑛), 0 < 𝜇 < 1

𝑒(𝑛) = 𝑑(𝑛) − 𝑧(𝑛), 𝑑(𝑛): desired response at time 𝑛.

✓ 𝑑(𝑛): desired signal coming from the sensors. This is a modeled response from the sensor in the desired direction of arrival.

Signals coming from the sensors are noisy.
✓ 𝒘(1) = [0 0…0]𝑇

✓ Parallelization: There is data dependency. However, the dot product between the weights and the input can also be implemented

in parallel (parallel_for and parallel_reduce). In addition, the update equation for the weights (dot product and summation) resemble

Figure C.1. Adaptive Beamforming Structure.

w2(n)

w1(n)

y1(n)

y2(n)

yM(n)

...

ADAPTIVE

ALGORITHM

z(n)+

wM(n)

Steering Vector

...

desired DOA ()

specif ied by steering v ector

...

...

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

12 Instructor: Daniel Llamocca

SAXPY, except that we are now dealing with complex-valued data. 𝑑(𝑛) is constant for a desired direction of arrival. The user can

change it at any time should a different direction of arrival is desired.

▪ Frost (Constrained LMS):

✓ For simplicity’s sake, we use the notation 𝒚 and 𝒘 as opposed to 𝒚(𝑛) and 𝒘(𝑛).
✓ 𝑁: number of snapshots (collection of M samples at time 𝑛). Also: 𝒘1 = 𝒘𝐶.

𝑓𝑜𝑟 𝑛 = 1:𝑁

 𝑧(𝑛) = 𝒘
𝐻. 𝒚

 𝒘 +1 = 𝒘𝐶 + 𝑃 × (𝒘 − 𝜇𝑧
∗(𝑛)𝒚)

𝑒𝑛𝑑

where
𝑃 = 𝐼 − 𝐶𝐻(𝐶𝐶𝐻)−1𝐶

𝒘𝐶 = 𝐶𝐻(𝐶𝐶𝐻)−1𝑐

✓ This adaptive algorithm solves a constrained optimization problem subject to 𝐶𝒘 = 𝑐. We want 𝒘 to accentuate signals coming

from some direction (𝒚
𝐻. 𝒘 = 1) and/or suppress jammers (𝒚

𝐻. 𝒘 = 0). Thus, the quantities 𝐶 and 𝑐 can be used to steer the

beamformer in a desired direction (i.e., switch to a desired beam pattern).
 𝐶: constraint matrix. It is formed from the set of ideal signals expressing various propagation directions.

 𝑐: column vector of constraining values. They are chosen to accentuate/select certain signals and suppress others.

✓ We consider 𝐶 to be formed from the set of steering vectors 𝑎𝐻():

𝐶 =

[

𝑎𝐻(1)

𝑎𝐻()
⋮

𝑎𝐻(𝑀)]

, 𝑎𝐻() = [𝑒𝑗�⃗� .𝑥 1 𝑒𝑗�⃗� .𝑥 2 …𝑒𝑗�⃗� .𝑥 𝑀]

 If, for example, we want to suppress every direction except for 1, then 𝑐 = [1 0 … 0]𝑇. By judiciously selecting 𝐶 and 𝑐, we

can control the beam pattern of the antenna array.

✓ Parallelization: There is data dependency. However, the dot product between the weights and the input can also be implemented

in parallel (parallel_for and parallel_reduce). In addition, the update equation for the weights can be parallelized as well. Note that

𝑃 and 𝒘𝐶 are constant quantities for a desired propagation direction. The user can modify this at any time for a different

propagation direction.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

13 Instructor: Daniel Llamocca

CYLINDER PRESSURE ESTIMATION

▪ Computing the instantaneous engine cylinder pressure in a spark ignition engine as a function of crank angle is extremely useful. It

can be applied as a means to obtain the instant torque, the indicated mean effective pressure, and for estimating optimal ignition
timing. However, due to the complexity of the combustion model, this information is not usually available.

▪ Traditional approach: Most modern spark ignition engines use a Look-Up Table (LUT):

✓ The fuel, spark and valve timings are mapped as a function of engine speed (rpm), and load (manifold air pressure: MAP). The
electronic engine control unit (ECU) then reads sensor inputs such as crank or cam encoders, manifold air pressure (MAP), mass
air-flow rate and throttle position, and then commands controllers or actuators to produce the desired spark, fuel and valve timing.

✓ While the LUTs can be quite large, especially with boosting and variable valve timing, the computing resources are still relatively
modest. However, this traditional LUT approach does not scale well with changes in operating conditions and parameters, as the
amount of required memory can grow very quickly.

▪ Ideal approach: Ideally, we would like to have physics-based combustion models that can run real-time in the ECU to reliably

estimate cylinder pressure. At this point in time, the computing power required to do this is prohibitive.

▪ Realistic approach: A less computationally intensive approach is to generate a LUT of Wiebe functions from dynamometer data

that predict the heat release rate, and then use this table along with a thermodynamics-based cylinder pressure model to calculate
the real-time cylinder pressure. This approach can be used in Hardware-in-the-Loop (HIL) plant models or potentially implemented
directly into the next generation engine ECUs. So, this pressure estimation model might be better suited to deliver crank-angle-
resolved cylinder pressure in real-time.

▪ This discrete model for in-cylinder pressure estimation has been validated (via MATLAB® implementation) using 13 sets of data from
two different engines and a range of speed/load conditions. It is also tuned for a range of engine conditions (speed, load, etc.) in
order to generate accurate heat release rate and estimated cylinder pressure traces. This model is suitable for determining optimal
spark timing.

DISCRETE MODEL FOR ENGINE CYLINDER PRESSURE ESTIMATION

▪ This pressure estimation model was derived using the 1st Law of Thermodynamics applied to the closed valve period of the engine
cycle. As a result, the model only performs pressure estimation for the closed-valve portion of the engine cycle. This is the most
computation-intensive portion of the cycle.

▪ The calculation starts at intake valve closing (IVC) and finishes at exhaust valve opening (EVO). Fig. D.1 shows the reference system
for the crank angles as well as where IVC, EVO, and IGN (ignition time) are expected to occur. The complete engine cycle goes from
-360 to 360 (1 cycle or 2 revolutions).

▪ The relationship among heat release rate, pressure, volume, and heat transfer rate is given by:

𝑑𝑄𝐻𝑅
𝑑𝜃

=
𝛾

𝛾 − 1
𝑃
𝑑𝑉

𝑑𝜃
+

1

𝛾 − 1
𝑉
𝑑𝑃

𝑑𝜃
+
𝑑𝑄𝐻𝑇
𝑑𝜃

DISCRETE MODEL
▪ It expresses the equation in terms of the discrete pressure per crank angle:

𝑑𝑄𝐻𝑅
𝑑𝜃

|

=

𝛾

𝛾 − 1
𝑃(𝑛)

𝑑𝑉

𝑑𝜃
|

+

1

𝛾 − 1
𝑉(𝑛) (

𝑃(𝑛 + 1) − 𝑃(𝑛)

𝜃(𝑛 + 1) − 𝜃(𝑛)
) +

𝑑𝑄𝐻𝑇
𝑑𝜃

|

✓ 𝜃(𝑛): crank angle at time 𝑛.

✓ 𝜃(0) (or 𝜃0): Ignition Time.

▪ Pressure 𝑃(𝑛) then results:

crank
angle(º)360ºIVC EVOIGN

Pressure

0º

TDC

BDC

-360º 0º
(TDC)

Figure D.1. Reference for the crank angles. Pressure and Heat Release are computed from IVC to EVO.

TDC denotes Top dead-center, BDC denotes Bottom dead-center, and IGN denotes Ignition time (𝜃0)

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

14 Instructor: Daniel Llamocca

𝑃(𝑛 + 1) = 𝑃(𝑛) + ∆𝜃 [
(𝛾 − 1)

𝑉(𝑛)

𝑑𝑄𝐻𝑅
𝑑𝜃

|

− 𝛾

𝑃(𝑛)

𝑉(𝑛)

𝑑𝑉

𝑑𝜃
|

−
(𝛾 − 1)

𝑉(𝑛)

𝑑𝑄𝐻𝑇
𝑑𝜃

|

]

✓
𝑑𝑄𝐻𝑇

𝑑𝜃
|

: Heat Transfer rate from the cylinder gases to the cylinder walls.

✓
𝑑𝑄𝐻𝑅

𝑑𝜃
|

: Heat Release rate.

Heat Transfer Rate
▪ There is an empirical model for the heat lost through the walls of the chamber. It is based on the heat transfer coefficient (ℎ𝑐𝑜𝑟𝑟)

adapted from the Woschni equation.
𝑑𝑄𝐻𝑇
𝑑𝜃

|

=
𝑑𝑄𝐻𝑇
𝑑𝑡

𝑑𝑡

𝑑𝜃
= ℎ𝑐𝑜𝑟𝑟(𝑛)𝐴𝑐ℎ(𝑛)(𝑇𝑔(𝑛) − 𝑇𝑤)

 0

𝑁𝜋
,𝑁 = 𝑟𝑝𝑚

ℎ𝑐𝑜𝑟𝑟(𝑛) = 𝑐 × 0.01 × 𝑉(𝑛)−0.06 × 𝑃(𝑛)0.8 × 𝑇𝑔(𝑛)
−0. × (𝑣𝑝̅̅ ̅ + 1.4)

0.8

𝑉(𝑛) = 𝑉𝐶 [1 +
1

2
(𝑟𝑐 − 1) [𝑙 + 1 − 𝑐𝑜𝑠𝜃 − (𝑙

 − 𝑠𝑖𝑛 𝜃)
1

2]]

✓ 𝑣𝑝̅̅ ̅: mean piston speed.

✓ 𝑉(𝑛): chamber volume per crank angle.
 𝑟𝑐: compression ratio

 𝑉𝐶: clearance volume.

 𝑙: ratio of the connecting rod length to the crank throw.

 The derivative of the volume with respect to the crank angle can then be obtained. Here 𝑉𝐷 =
1

𝑉𝐶(𝑟𝑐 − 1) is called the

displacement volume.

𝑑𝑉

𝑑𝜃
|

=

1

𝑉𝐷𝑠𝑖𝑛𝜃 [1 + 𝑐𝑜𝑠𝜃 (𝑙 − 𝑠𝑖𝑛 𝜃)

1

2⁄]

✓ 𝑇𝑤: temperature of the cylinder wall.

✓ 𝑇𝑔(𝑛): Gas temperature in the cylinder. It results from the ideal gas law: 𝑇𝑔(𝑛) =
𝑃()×𝑉()

𝑀𝑅

 𝑅: universal gas constant

 𝑀: mass of the trapped gas: 𝑀 =
𝐴𝐹+1

1−𝑟𝑓
×𝑚𝑓

 𝑟𝑓: residual fraction

 𝐴𝐹: Air/fuel ratio

 𝑚𝑓: mass of fuel in the cylinder

✓ 𝛾: specific heat ratio. It can be computed as: 𝛾 = 1. 92 − 8.1 ÷× 10− × 𝑇𝑔(𝑛)

✓ 𝐴𝑐ℎ(𝑛): surface area at every crank angle: 𝐴𝑐ℎ(𝑛) = 𝐴𝑐ℎ(𝑇𝐷𝐶) +
𝜋

𝐵𝑆 [𝑙 + 1 − 𝑐𝑜𝑠𝜃 − (𝑙

 − 𝑠𝑖𝑛 𝜃)
1

2]

 𝐴𝑐ℎ(𝑇𝐷𝐶): surface area of the chamber at top dead center (TDC)
 𝐵: Bore

 𝑆: Stroke

Heat Release Rate
▪ A model for the heat release rate is presented here. The formula starts working at spark timing (𝜃0) and finishes after burn duration

(∆𝜃𝐵).

✓
𝑐
: combustion efficiency.

✓ 𝑚𝑓: mass of the fuel in the cylinder.

✓ 𝐿𝐻𝑉: lower heating value.

✓ 𝛼 and 𝛽: parameters used to calibrate the model.

✓ The mass fraction burned (
𝑄𝐻𝑅

𝑐𝑚𝑓𝐿𝐻𝑉
) can be modeled using the Wiebe function. The Heat Release rate can then be expressed in

terms of the Wiebe function:

𝑑𝑄𝐻𝑅
𝑑𝜃

|

= {

0, 𝜃 ≤ 𝜃0

𝑐
𝑚𝑓𝐿𝐻𝑉𝛼(𝛽 + 1)

∆𝜃𝐵(1 − 𝑒
−𝛼)

(
𝜃 − 𝜃0
∆𝜃𝐵

)
𝛽

× 𝑒
[−𝛼(

𝜃𝑛−𝜃0
∆𝜃𝐵

)
𝛽+1

]
, 𝜃 > 𝜃0

MODEL CALIBRATION
▪ The heat release and heat transfer models are calibrated based on actual pressure traces. The model only needs to store the heat

transfer and heat release parameters in order to generate an estimated pressure trace.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-performance Embedded Programming Fall 2024

15 Instructor: Daniel Llamocca

▪ Most Heat Transfer model parameters are directly obtained by the engine data and the operating conditions (rpm, chamber pressure,
load, etc.)

▪ The calibration procedure for a particular engine and operating conditions might go as follows (this results in the parameters 𝛼, 𝛽, 𝑐,

and ∆𝜃𝐵)
1. Given the actual pressure trace, pick an initial value of 𝑐 in order to complete a tentative heat transfer rate model. A tentative

heat release rate is then computed.
2. Plot the cumulative heat release rate (𝑄𝐻𝑅). The maximum value is the total heat release, whose value should equal the actual

fuel energy released,
𝑐
𝑚𝑓𝐿𝐻𝑉. If the cumulative heat release does not match the fuel energy release, then adjust 𝑐, so that the

cumulative heat release reaches
𝑐
𝑚𝑓𝐿𝐻𝑉. Alternatively, the mass fraction can be plotted versus crank angle, where the mass

fraction is the cumulative heat release divided by
𝑐
𝑚𝑓𝐿𝐻𝑉. Then, adjust 𝑐 until the mass fraction reaches 1. This is a preferred

approach.
3. At this point, the actual heat release rate and the heat transfer rate models are calibrated. With the actual mass fraction, one can

get the burn duration (∆𝜃𝐵), counted here from 0 to 97% of the mass fraction (it should be noted that some researchers use 10-

90% or other variations that affect the Wiebe constants).
4. A non-linear curve-fitting code can be used to fit the Wiebe function to the cumulative heat release curve. This step will result in

𝛼 and 𝛽 that are parameters of the heat release rate model.

5. With the complete models for the heat transfer rate and heat release rate, we can now compute the estimated pressure trace per
crank angle.

▪ We can store these parameters resulting from calibration for different engines and operating conditions. They can be loaded at run-

time. It is much more efficient to store the calibration parameters rather than the actual pressure traces.

▪ Parallelization: Once the calibration parameters are known, the different components of the pressure model can be computed in

parallel. Moreover, each component consists of multiple operations that allow us to explore different strategies as the computations
are unbalanced.

▪ The process can be extended to cover the full operating range of an engine. Cylinder pressure data can be collected that covers the

entire operating range of a given engine. For a set of specific conditions (e.g.: load, rpm, valve timing), the heat release and heat
transfer parameters can be determined. The parameter space can be interpolated to cover the full operating space and then used to
produce sets of heat release parameters that cover the full range of speed, load, spark timing, etc.

	Convolutional Neural Networks
	CNN Architecture
	Convolutional Layers
	Fully Connected Network (FCN)
	C++/TBB Code
	Training

	Algorithms for median filter computations
	Forgetful_selection
	Parallel computation of 4 pixels
	[Salvador2018] approach

	Adaptive Beamforming
	Beamforming Structure

	Cylinder Pressure Estimation
	Discrete Model for Engine Cylinder Pressure Estimation
	Model Calibration

